STRUCTURE OF R(3, 3)-GROUPS

BY

GREGORY A. FREIMAN

School of Mathematics Institute for Advanced Study, Princeton, NJ 08540, USA; and *School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact* Sciences *Tel Aviv University, Rarest Aviv, Tel Aviv, Israel*

AND

BORIS M. SCHEIN

Department of Mathematical Science8 University of Arkansas, Fayetteville, AR 72701, USA

ABSTRACT

We describe groups G in which the set *{abc, acb, bac, bca, cab, cba}* contains three different elements at most for any $a, b, c \in G$ and show how this type of problem is connected with the rewritability (or permutation) properties of groups.

In this paper we solve a problem connected with a rewritability property in groups. This type of problem is explained in more detail in our paper [4]. This general direction studies properties of groups and semigroups determined by multiplication of subsets. Analogous problems are considered in the book by Arad and Herzog [1] and in a survey by Blyth and Robinson [2]. For other references see the bibliography at the end of [4].

For an *m*-element subset $A = \{a_1, a_2, \ldots, a_m\}$ of a group G let $A^{[m]}$ denote the set of all products $a_{\pi(1)}a_{\pi(2)}\cdots a_{\pi(m)}$ for all permutations π of the set $\{1, 2, \ldots, m\}$. Clearly, $A^{[m]}$ cannot contain more than m! different elements. The cardinality $|A^{[m]}|$ of $A^{[m]}$, however, may be much smaller. For example, if G is abelian, then $|A^{[m]}| = 1$ for every such subset A. A group G is called

Received August 21, 1990 and in revised form March 10, 1991

an $R(m, n)$ -group if $|A^{[m]}| \leq n$ for all m-element subsets A of G. We can assume that n is a natural number such that $1 \leq n \leq m!$ and, for convenience sake, the symbol $R(m, n)$ will denote the class of all $R(m, n)$ -groups. Clearly, $R(m, n) \subset R(m, n + 1)$. In particular, we obtain a chain

$$
R(m,1)\subset R(m,2)\subset\ldots\subset R(m,m!).
$$

If $m = 1$, then $R(m, n)$ is the class of all groups, and so we assume that $m > 1$. Then $R(m, 1)$ is the class of all abelian groups and $R = (m, m!)$ the class of all groups. For $m = 2$ we have the trivial cases of $R(2,1)$ and $R(2,2)$. For $m = 3$ there are four nontrivial classes: $R(3, n)$ for $2 \le n \le 5$. We described $R(3, 2)$ in our previous paper [4] (it consists of all those groups G for which $|G'| \leq 2$, where G' is the commutator subgroup of G). In this paper we describe $R(3,3)$. A description of $R(3, 5)$ is a known group theory problem, for $R(3, 5)$ coincides with the so-called Q_3 -groups whose structure is not known (see [2] and [4]). We hope that describing classes $R(3, n)$ when n grows may shed light on the structure of Q_3 -groups and help solve similar problems. At the end of this paper we list a few natural unsolved problems.

THEOREM: *A group G is an R*(3,3)-group if and only if $|G'| \leq 3$. If $|G'| = 1$, *then G is abelian; if* $|G'| = 2$, then G is an $R(3,2)$ -group; and if $|G'| = 3$ then *either* $G/Z(G)$ *is a group of exponent 3 or* $G/Z(G)$ *is isomorphic to* S_3 *, the symmetric* group of *degree 3.*

Proof: We use the classification of three-element subsets from [4]. If $A =$ $\{x, y, z\}$ is a three-element subset of a group, then $|A^{[3]}| \leq 3$ if and only if one of the following nine systems of equalities holds, where the elements x, y and z are renamed *as a, b,* and c in a certain order:

(1) $abc = acb = bac = bca = cab = cba$ (all elements of A commute);

- (2) $abc = bac = bca$ and $acb = cab = cba$ (two pairs of elements of A commute);
- (3) $abc = bac = cab = cba$ and $acb = bca$ (one pair of elements of A commutes);
- (4) $abc = bca = cab$ and $acb = bac = cba$;
- (5) $abc = bac$, $cab = cba$, and $acb = bca$ (one pair of elements of A commutes);
- (6) $abc = bac = cab = cba$, with acb and bca isolated (one pair of elements of A commutes);
- (7) $abc = bca$, $bac = cab$, and $acb = cba$;
- (8) $abc = cba$, $acb = bca$, and $bac = cab$;

(9) $acb = bac = cba$, $bca = cab$, and abc isolated (that is, not equal to the product of a , b , and c in any other order).

Each of these systems is called a Type, and only those equalities of products of a, b, and c, which are specifically mentioned, hold in each Type. For example, the equality $abc = bac$ is not listed in Type (7), and hence $abc \neq bac$ in this Type. In Type (9) *abc* is not equal to any other product in $A^{[3]}$, which is why we say that *abc* is isolated.

Proof: Sufficiency. Let $|G'| \leq 3$. If $|G'| = 1$, then G is an abelian group. If $|G'| = 2$, then, by Theorem 2, G is an $R(3, 2)$ -group and hence an $R(3, 3)$ -group. Now let $|G'| = 3$ and consider a subset $A = \{a, b, c\}$ of G. If more than one pair of elements of A commutes, then A belongs to Types (1) or (2) . If a and b are the only commuting elements of A, consider $[ab, c^{-1}]$. If $[ab, c^{-1}] = 1$, then $abc = cab$, and hence A belongs to Type (3) or Type (6). Let $[ab, c^{-1}] \neq 1$. If $[a, c^{-1}] = [a, c^{-1}]$, then an easy calculation shows that $bc = cb$, contrary to our assumption. Thus, $[ab, c^{-1}] \neq [a, c^{-1}]$. Analogously, $[ab, c^{-1}] = [b, c^{-1}]$ leads to $ac = ca$, and hence $[ab, c^{-1}] \neq [b, c^{-1}]$. Since c commutes neither with a nor with b, we see that $[a, c^{-1}]$, $[b, c^{-1}]$, and $[ab, c^{-1}]$ are three elements of G', all different from 1. It follows that $[a, c^{-1}] = [b, c^{-1}]$. An easy calculation shows that this equality means $acb = bca$, that is A belongs to Types (3) or (5).

Suppose that no two elements of A commute. Let $abc \neq cab$ and $abc \neq cab$. Then $[ab, c] \neq 1$. It is easy to see that $[ab, c] = [b, c] \Leftrightarrow ac = ca$ and $[ab, c] =$ $[b, a] \Leftrightarrow abc = cba$. Therefore, $[ab, c] \notin \{[b, a], [b, c]\}$. Thus, $[b, a] = [b, c]$. Also, $[ab, c] \neq [b, c]$ means that $[ab, c] = [b, c]^2 = [b, a][b, c]$. Now, the equality $[ab, c] = [b, a][b, c]$ is easily shown to mean $acb = cba$.

We have proved that $abc \neq cab$ and $abc \neq cab$ imply $acb = cba$. Interchanging here b and c, we obtain that $acb \neq bac$ and $acb \neq bca$ imply $abc = bca$.

Suppose that $|A|^{[3]} > 3$. Then $A^{[3]}$ contains at least two isolated products (that is, products that are not equal to any other product in $A^{[3]}$). Without loss of generality, assume that *abc* is an isolated product. Then $abc \neq cab$ and $abc \neq cba$. Therefore, as we have proved earlier, $acb = cba$. Also, $abc \neq bca$, and hence $acb = bca$ or $acb = bac$. If $acb = bca$, then $cba = acb = bca$, so that $cb = bc$, contrary to our assumption. Thus, $acb \neq bca$. It follows that $acb = bac$. We proved that if *abc* is an isolated product, then $acb = bac = cba$. Then $|A^{[3]}| > 3$ implies that abc , bca and cab are isolated products in $A^[3]$ and the commutators $[a, bc], [b, ca],$ and $[c, ab]$ differ from 1. If $[a, bc] = [ab, c]$, an easy argument shows

that $bca = cab$, and so *bca* and *cab* are not isolated. Then $[a, bc] \neq [ab, c]$ and, since $|G'| = 3$, we obtain $[a, bc] = [ab, c]^{-1} = [c, ab]$. Analogously, $[c, ab] = [b, ca]$, and hence $[a, bc] = [b, ca] = [c, ab]$. Now, $[b, ca] = [b, a] \Leftrightarrow bc = cb$, so that $[b, ca] = [b, a]^{-1} = [a, b]$. Analogously, $[c, ab] = [b, c]$, so that $[a, b] = [b, c]$. But we have seen earlier that $[b, a] = [b, c]$. Then $[a, b] = [b, a] = [a, b]^{-1}$, which, together with $[a, b]^3 = 1$, shows that $[a, b] = 1$, contradicting $ab \neq ba$. Thus, $|A^{[3]}| > 3$ leads to a contradiction. It follows that $|A^{[3]}| \leq 3$, and hence G is an $R(3,3)$ -group.

Necessity: Let G be an $R(3,3)$ -group. For $a, b \in G$ we consider two cases: $ab \neq ba$ and $ab = ba$. Assume that $ab \neq ba$. The only commuting elements of ${a, a^2, b}$ are a and a^2 , and possibly b and a^2 . If $ba^2 \neq a^2b$ then ${a, a^2, b}$ satisfies one of (3), (5) or (6). In each of these cases $baa^2 = aa^2b$ or $aba^2 = a^2ba$. The latter possibility yields $ab = ba$, which is impossible. Therefore, if $ba^2 \neq a^2b$ then $ba^3 = a^3b$. Thus, $C(a^2) \cup C(a^3) = G$ for all $a \in G$. Since $C(a^2)$ and $C(a^3)$ are subgroups of G, we obtain $C(a^2) = G$ or $C(a^3) = G$, so that for each $a \in G$ either $a^2 \in Z(G)$ or $a^3 \in Z(G)$.

LEMMA 1: One of the following four possibilities holds for every $R(3,3)$ -group *G:*

(1) *G is abelian;*

(2) $a^2 \in Z(G)$ for every $a \in G$ (that is $G/Z(G)$ is a group of exponent 2);

(3) $a^3 \in Z(G)$ for every $a \in G$ (that is, $G/Z(G)$ is a group of exponent 3);

(4) $G/Z(G) \cong S_3$, where S_3 denotes a symmetric group of degree 3.

Proof. Suppose that the possibilities (1), (2) and (3) do not hold, that is, G possesses non-central elements whose squares belong to the center as well as those whose cubes belong to the center. Consider $H = G/Z(G)$. Clearly, H is an $R(3,3)$ -group in which all elements are of orders 1, 2, or 3. It suffices to prove that $H \cong S_3$.

Let $x, y, z \in H$, $x \neq y$, and $1 \neq o(x) = o(y) \neq o(z) \neq 1$, where $o(u)$ denotes the order of u.

If x commutes with z, then $o(xz) = 6$, which is impossible, and hence elements of orders 2 and 3 never commute. Thus, the only commuting elements in $X =$ ${x, y, z}$ may be x and y. If $xy = yx$, then X is of Types (3), (5) or (6), and hence $(xy)z = z(xy)$ in Types (3) and (6), or $xzy = yzx$ in Types (3) and (5). Since x and y are commuting elements of the same order, $o(xy)$ divides $o(x)$, that is, either $o(xy) = 1$ or $o(xy) = o(x)$. In Types (3) or (6) $o((xy)z)$ is the least common multiple of $o(xy)$ and $o(z)$, and hence $o(xy) = 1$. Then $xy = 1$ and $x = y^{-1}$. If $o(y) = 2$, then $x = y$, which contradicts $x \neq y$; and if $o(y) = 3$, then $x = y^2$. In Type (5)

$$
xyz = (xyz)x^{o(x)} = x(yzx)x^{o(x)-1} = x(xzy)x^{o(x)-1} = (x^2z)yx^{o(x)-1}
$$

If $o(x) = 2$, then $xyz = zyx$, contrary to (5). Therefore, no two different elements of order 2 commute. If $o(x) = 3$, then $(x^2y)z = x(xyz) = (x^3z)yx^2 = zyx^2 = 0$ $z(x^2y)$. Since x and y commute, $o(x^2y)$ divides $o(x^2) = o(y) = 3$. It cannot be 3, for x^2y commutes with z and $o(z) = 2$. Therefore, $o(x^2y) = 1$, and hence $x^2y = 1$, so that $y = x^{-2} = x$, contrary to $x \neq y$. Thus, two different elements of order 3 can commute only if one of them is a square of the other.

If $xy \neq yx$ and $o(x) = o(y) \neq o(z)$, then X has no commuting elements and so it is of Types (4), (7), (8), or (9). Also, $xy \neq 1$, because $xy \neq yx$. Thus, $o(xy)$ is 2 or 3. Another fact we will use is that $(yx)^{o(xy)+1} = y(xy)^{o(xy)}x = yx$ implies $(yx)^{o(xy)} = 1$, and hence $o(xy) = o(yx)$.

If (4) holds, then z commutes with xy , and hence $o(xy) = o(z)$. If $o(z) = 2$, then $xy = z$, for no two different elements of order 2 commute. If $o(z) = 3$, then $xy \in \{z, z^2\}$, for if two different elements of order 3 commute, then each of them is the square of the other.

Let (7) hold. Call a the **middle** element of (7). Let $o(x) = o(y) = 2$. If x is the middle element, then

$$
xzy = y^2xzy = y(yxz)y = y(zxy)y = yzxy^2 = yzx.
$$

If y is the middle element, then

$$
xzy = xzyx^2 = x(zyx)x = x(xyz)x = x^2yzx = yzx.
$$

If z is middle, then

$$
xyz = xyzx^2 = x(yzx)x = x(xzy)x = x^2zyx = zyx.
$$

Each of the equalities $xzy = yzx$ and $xyz = zyx$ contradicts (7).

Now let $o(x) = o(y) = 3$ and $o(z) = 2$. If x is middle, then

$$
xyz = z^2xyz = z(zxy)z = z(yxz)z = zyxz^2 = zyx.
$$

The equality $xyz = zyx$ contradicts (7).

If y is middle, then

$$
yxz = z^2 yxz = z(zyx)z = z(xyz)z = zxyz^2 = zxy.
$$

The equality $yxz = zxy$ contradicts (7). If z is middle, it follows from (7) that z commutes with xy . Then $xy = z$ and $o(xy) = 2$.

If (8) holds and $o(z) = 3$, then

$$
xy = xyz^3 = (xyz)z^2 = (zyx)z^2 = z(yxz)z
$$

$$
= z(zxy)z = z2(xyz) = z2(zyx) = z3(yx) = yx.
$$

If $o(x)=2$, then $o(x)=3$ and

$$
yz = yzx3 = (yzx)x2 = (xzy)x2 = x(zyx)x
$$

$$
= x(xyz)x = x2(yzx) = x2(xzy) = x3zy = zy.
$$

Thus, y commutes either with x or with z, which contradicts (8) . Therefore, Type (8) cannot hold.

It is easy to see that in Type (9) z commutes with xy or with yx . It follows from $xy \neq 1$ that $o(z) = o(xy)$ or $o(z) = o(yx)$. Since $o(xy) = o(yx)$, we obtain $o(xy) = o(z)$. As in Type (4) above, we conclude that $xy = z$ or $xy = z^2$.

Let $u, v, x, y \in H$ and $o(u) = o(v) = 2$, $o(x) = o(y) = 3$. Then either $uv = 1$, in which case $u = v$, or $u \neq v$, in which case $uv \neq vu$ and, as we have just seen, $uv \in \{x, x^2\}$. Analogously, $uv \in \{y, y^2\}$. Therefore, either $x = y$, or $x = y^2$. Thus, H contains exactly two elements of order 3, namely x and x^2 . Suppose that u, v, w, z are four different elements of order 2. Then each of the products $uz, vz,$ and wz has order 3, and hence equals x or $x²$. It follows that at least two of these products are equal, and so at least two elements in $\{u, v, w\}$ are equal. Therefore, H cannot contain more than three elements of order 2. Thus, H contains 1, two elements of order 3, and at most three elements of order 2. Since all groups with less than six elements are abelian, $|H| = 6$. The only nonabelian group of order six is isomorphic to S_3 . This completes the proof of Lemma 1. **|**

LEMMA 2: If G is an $R(3,3)$ -group and $G/Z(G)$ is a group of exponent 2, then *G is an* R(3, *2)-group.*

Proof: Let G be a nonabelian $R(3,3)$ -group with $G/Z(G)$ a group of exponent 2 (that is, $a^2 \in Z(G)$ for all $a \in G$). To prove that G is an $R(3, 2)$ -group consider a subset $A = \{a, b, c\}$ of G.

If A is of Type (5), then $acb = bca$ implies $b^2ac = acb^2 = (acb)b = (bca)b$ $b(cab)$. Cancelling *b* we obtain $bac = cab$, which contradicts (5).

If A is of Types (6) or (7), then $bac = cab$, and hence $acb^2 = b^2ac = b(bac) =$ $b(cab) = (bca)b$. Cancelling b we obtain $acb = bca$, which contradicts both (6) and (7).

If A is of Type (9), then b commutes with ac. No two other elements of the set $C = \{a, b, ac\}$ commute, because no elements of A commute. Thus C belongs to one of the Types (3), (5), or (6). But Types (5) and (6) are impossible, and hence C is of Type (3). Thus $b \cdot a \cdot ac = ac \cdot a \cdot b$. Since $a^2 \in Z(G)$, we obtain $a^2bc = ba^2c = acab$. This yields $abc = cab$, which contradicts (9).

If A is of Type (8) , consider C again. No two elements of C commute, as now $b(ac) \neq (ac)b$. Thus C belongs to one of the Types (4), (7), (8), or (9). But we have just seen that Types $(7)-(9)$ are impossible, and hence C belongs to (4). Then $ac \cdot b \cdot a = a \cdot ac \cdot b$. Cancelling a we obtain $cba = acb$, contrary to (8) for A.

Thus, A can belong only to one of the Types $(1)-(4)$. By Theorem 2 of [4], G is an $R(3,2)$ -group.

LEMMA 3: If G is an $R(3,3)$ -group and $G/Z(G)$ is a group of exponent 3, then $|G'| \leq 3.$

Proof: Let G be a nonabelian $R(3,3)$ -group and $G/Z(G)$ a group of exponent 3. First we prove that no subset $A = \{a, b, c\}$ of G can belong to Types (3), (8) and (9).

Let A be of Type (9). Consider $B = \{a, b, ca\}$. Only b and *ca* commute in this set. Thus, B belongs to the Types (3) , (5) , or (6) . If (3) or (5) hold, then $ca \cdot a \cdot b = b \cdot a \cdot ca$. Thus, $ca^2b = (bac)a = (cba)a$. Cancelling c we obtain $a^2b = ba^2$ Thus, both a^2 and a^3 commute with b, and hence $ab = ba$, contrary to our assumption about A. If (6) holds, then $a \cdot b \cdot ca = b \cdot ca \cdot a$. Cancelling a we obtain $abc = bca$, which contradicts (9) . Thus, Type (9) is impossible.

Let A be of Type (8). No elements of the set $C = \{a, b, ac\}$ commute, and hence C belongs to Types (4) , (7) , (8) , or (9) . As we have just seen, Type (9) is impossible. If C is of Type (4), then $ac \cdot b \cdot a = a \cdot ac \cdot b$. Cancelling a we obtain $cba = acb$, contrary to (8) for A. Let C be of Type (7). If a is the middle element, then $ac \cdot a \cdot b = b \cdot a \cdot ac$, and hence $(ab)(ac) = a(bac) = a(cab) = ba^2c$. Cancelling *ac* we obtain $ab = ba$, which is false. If b is the middle element, then $ac \cdot b \cdot a = a \cdot b \cdot ac$. Cancelling a we obtain *cba = bac,* which fails in A. If *ac* is the middle element, then $a \cdot ac \cdot b = b \cdot ac \cdot a$, so that $abca = a(bca) = a(acb) = a^2cb = baca$. Cancelling a we obtain $abc = bac$, which fails in A. Thus, C cannot be of Type (7). If C is of Type (8) , then $ac \cdot b \cdot a = a \cdot b \cdot ac$. Cancelling a we obtain $cba = bac$, which fails in A. Thus, C cannot belong to any of the Types (1) – (9) . This shows that A cannot belong to Type (8).

Now let $ab = ba$, and suppose that A belongs to Type (3) . Then no two elements of the set $E = \{a, bc, c\}$ commute, and hence E is of Type (4) or (7). In the former case $bac^2 = abc^2 = a \cdot bc \cdot c = bc \cdot c \cdot a = bc^2a$. Cancelling b we obtain $ac^2 = c^2a$. Thus, a commutes both with c^2 and c^3 , and hence $ac = ca$, contrary to our assumption about A. So E must be of Type (7) . If a is the middle element of E, then $bc \cdot a \cdot c = c \cdot a \cdot bc$, and hence $bca = cab$, which fails in A. If *bc* is the middle element of E, then $cabc = a \cdot bc \cdot c = c \cdot bc \cdot a$. Cancelling c we obtain $abc = bca$. Since $ab = ba$, we obtain $bac = bca$, whence $ac = ca$, which contradicts our assumption about A . Thus, Type (3) is impossible.

To complete our proof of Lemma 3 we need another Lemma.

LEMMA 4: Let G be an $R(3,3)$ -group with $G/Z(G)$ a group of exponent 3. For every $a, b, c \in G$, if c commutes neither with a nor with b, then $[a, c] = [b, c]$ or $[a, c] = [b, c]^{-1}.$

Proof. Let $ab \neq ba$. Then no two elements of the set $\{a, b, ab\}$ commute, and so this set is of Type (4) or (7). If (4) holds, then $b \cdot a \cdot ab = a \cdot ab \cdot b$. Cancelling b we obtain $a^2b = ba^2$, which, as we have seen, implies $ab = ba$, contrary to our assumption. Therefore, (7) holds. If a or b is the middle element, then either $b \cdot a \cdot ab = ab \cdot a \cdot b$ or $a \cdot b \cdot ab = ab \cdot b \cdot a$. In both cases, cancelling ab we obtain $ab = ba$, which is impossible. Therefore, ab is the middle element, and so $a \cdot ab \cdot b = b \cdot ab \cdot a$ and $b \cdot a \cdot ab = ab \cdot b \cdot a$.

We proved that G satisfies the identities $a^2b^2 = (ba)^2$ and $ab^2a = ba^2b$. It follows that $a^3b^3 = a(a^2b^2)b = a(baba)b = (ab)^3$, and so the mapping $f: G \to G$ defined by $f(a) = a^3$ for all $a \in G$ is an endomorphism of G. Since f maps G into $Z(G)$, we see that $G' \subset \text{Ker } f$, and hence $[a, b]^3 = 1$ for all $a, b \in G$. Also, $(ab)^3 = a^3b^3 = b^3a^3 = (ba)^3$. Now we have

$$
[a, b] = (ba)^{-2}(ba)(ab) = (ba)^{-2}(ba^2b) = (ba)^{-2}(ab^2a) = (ba)^{-3}b(a^2b^2)a
$$

= $(ba)^{-3}b(ba)^2a = b(ba)^{-3}(ba)^2a = b(ba)^{-1}a = [b^{-1}, a].$

Thus $[a, b] = [b, a]^{-1} = [a^{-1}, b]^{-1} = [b, a^{-1}]$.

Again, consider $A = \{a, b, c\}$, in which c commutes neither with a nor b. Let $ab = ba$. Then $ab^{-1} = b^{-1}a$. Thus A belongs to one of Type (5) or (6), and hence $acb = bca$ or $abc = cab$. In the former case,

$$
[a, c][c, b] = a^{-1}c^{-1}acc^{-1}b^{-1}cb = a^{-1}c^{-1}ab^{-1}cb
$$

$$
= a^{-1}c^{-1}b^{-1}acb = (bca)^{-1}(acb) = 1,
$$

and hence $[a, c] = [c, b]^{-1} = [b, c]$. If (6) holds, we obtain

$$
(ca)(ac)^{2}(cb) = (ca)c^{2}a^{2}cb = (cac)(ca^{2}c)b = (cac)(ac^{2}a)b = (ca)^{2}c(cab)
$$

$$
= (ca)^{2}c(abc) = (ca)^{3}bc = (bc)(ca)^{3} = (bc)(ac)^{3},
$$

and hence

$$
cac^{-1}a^{-1}cb = (ca)(ac)^{-1}(cb) = (ca)(ac)^{2}(ac)^{-3}(cb) = (ca)(ac)^{2}(cb)(ac)^{-3} = bc.
$$

Therefore, $[c^{-1}, a^{-1}] = cac^{-1}a^{-1} = bcb^{-1}c^{-1} = [b^{-1}, c^{-1}]$. This equality follows from $ab = ba$ and $abc = cab$. If we replace a, b, and c by a^{-1} , b^{-1} , and c^{-1} , respectively, we obtain the equality $[c, a] = [b, c]$. Therefore, $[a, c] = [c, a]^{-1}$ $[b, c]^{-1}.$

Now suppose that $ab \neq ba$. Then A satisfies (4) or (7). Let (4) hold. Then *abc = cab, and*

$$
[a, c][c, b^{-1}] = a^{-1}c^{-1}ac \cdot c^{-1}bcb^{-1} = b(b^{-1}a^{-1}c^{-1}abc)b^{-1}
$$

$$
= b(cab)^{-1}(abc)b^{-1} = 1.
$$

We obtain $[a, c] = [c, b^{-1}]^{-1} = [b^{-1}, c] = [c, b] = [b, c]^{-1}$.

Now let A satisfy (7). Suppose that a is the middle element. Then a and *bc are* the only commuting elements of the set $E = \{a, bc, c\}$, and so E is of Type (5)

or (6). If (6) holds, then $c \cdot abc = abc \cdot c$, and hence $cab = abc$, which contradicts (7) . If (5) holds, we have

$$
(cb)(ac) = (cba)c = (acb)c = a \cdot c \cdot bc = bc \cdot c \cdot a = (bc)(ca).
$$

Thus $ac = (cb)^{-1}(bc)(ca)$, so that $[a^{-1}, c^{-1}] = (ac)(ca)^{-1} = (cb)^{-1}(bc) = [b, c]$. Therefore,

$$
[a,c] = [c,a]^{-1} = [c,a^{-1}] = [a^{-1},c]^{-1} = [a^{-1},c^{-1}] = [b,c].
$$

Type (7) is invariant under the transposition of b and c. It follows that $[a, c] =$ $[b, c]$ holds together with $[a, b] = [c, b]$, and hence $[a, b] = [c, b] = [c, a]$. If we apply a cyclic permutation (a, b, c) to (7) , b becomes the middle element and we obtain the equalities $[b, c] = [a, c] = [a, b]$. Applying a cyclic permutation (a, c, b) to (7), we make c the middle element, and obtain the equalities $[c, a] = [b, a] = [b, c]$, which imply $[a, c] = [b, c]$. Thus, $[a, c] = [b, c]$ for any middle element of A. This proves Lemma 4. |

To complete the proof of Lemma 3 assume that $a, b, c, d \in G$ and consider *[a, b] and [c, d].* Suppose that these commutators differ from 1. There exists $e \in G$ which commutes with neither b nor c. Indeed, if there is no such e , then $C(b) \cup C(c) = G$, and hence $C(b) = G$ or $C(c) = G$, that is, $b \in Z(G)$ or $c \in Z(G)$. Then $[a, b] = 1$ or $[c, d] = 1$, contrary to our assumption.

Since a and e do not commute with b, obtain, by Lemma 4, that $[a, b] = [e, b]$ or $[a, b] = [e, b]^{-1}$. Since e does not commute with b and c, we obtain, again by Lemma 4, $[e, b] = [e, c]$ or $[e, b] = [e, c]^{-1}$. Now, c does not commute with e and d. Thus, by Lemma 4, $[e, c] = [d, c]$ or $[e, c] = [d, c]^{-1}$. Combining these possibilities, we see that $[a, b] = [c, d]$ or $[a, b] = [c, d]^{-1}$. Thus, $|G'| \leq 3$ (in fact, $|G'| = 3$. This proves Lemma 3.

LEMMA 5: Let G be a group such that $G/Z(G) \cong S_3$. Then $|G'| = 3, G$ is an R(3, *3)-group and no three-element* subset *of G belongs to the Types (4) and (7).*

Proof: Let $f : G \to S_3$ be a homomorphism of G onto the group S_3 of all permutations of $\{1,2,3\}$ and let $Z = Z(G)$ be the kernel of f. Then G is a disjoint union of cosets $Z, G_{12}, G_{13}, G_{23}, G_{123}$, and G_{132} of Z. Here G_{ij} = $f^{-1}((i,j))$ and $G_{ijk} = f^{-1}((i,j,k))$. Choose $p \in G_{12}$ and $q \in G_{13}$. Then $pq \in G_{123}, qp \in G_{132}, pqp, qpq \in G_{23}, (pq)^2 \in G_{132}, (qp)^2 \in G_{123}, \text{ and } p^2, q^2 \in Z.$

Consider a subset $A = \{a, b, c\}$ of G. If more than one pair of its elements commute, then A belongs to Type (1) or (2) . Suppose that only a and b commute in A. Then $f(a)$ and $f(b)$ commute in S_3 , and hence either $f(a) = f(b)$ or $f(a) \in \{(1,2,3), (1,3,2)\}$ and $f(a^2) = f(b)$.

Consider all possible cases when $ab = ba$. Let $f(a) = f(b)$. One possibility is that $a, b \in G_{ij}$. Without loss of generality we may assume that $a, b \in G_{12}$. Then $a = pu$ and $b = pv$ for certain $u, v \in Z$. Since c commutes neither with a nor b, we see that $c \notin Z \cup G_{12}$. Without loss of generality we may suppose that either $c \in G_{13}$ or $c \in G_{123}$. In the former case $c = qw$ for some $w \in Z$. Then

$$
abc = (pu)(pv)(qw) = p2quvw = q(p2uvw) \in G13,
$$

\n
$$
acb = (pu)(qw)(pv) = (pqp)(uvw) \in G123,
$$

\n
$$
bca = (pv)(qw)(pu) = (pqp)(uvw) = acb,
$$

\n
$$
cba = cab = (qw)(pu)(pv) = q(p2uvw) = abc = bac.
$$

Thus, A is of Type (3). If $c \in G_{123}$, then $c = pqw$ for some $w \in Z$. In this case

$$
bac = abc = cba = cab = pq(p2uvw) \in G123,
$$

$$
acb = bca = qp(p2uvw) \in G132,
$$

and hence A is of Type (3).

Now assume that $a, b \in G_{ijk}$. Again, without loss of generality we can assume that $a, b \in G_{123}$. Then $a = pqu$ and $b = pqv$ for some $u, v \in Z$. Now, c does not commute with a and b, and hence $c \notin Z \cup G_{123} \cup G_{132}$. It follows that $c \in G_{ij}$. Without loss of generality assume that $c \in G_{12}$. Then $c = pw$ for some $w \in Z$. Computing all elements in $A^{[3]}$, we easily obtain:

$$
bac = abc = pqpqpuvw \in G_{13}, \qquad acb = bca = p(p^2q^2uvw) \in G_{12},
$$

and
$$
cba = cab = qpq(p^2uvw) \in G_{23}.
$$

It follows that A belongs to Type (5).

Next we suppose that $ab = ba$, but $f(a) \neq f(b)$. Without loss of generality, $a \in G_{123}$ and $b \in G_{132}$. Thus, $a = pqu$ and $b = qpv$ for some $u, v \in Z$. Since c does not commute with a and b, $c \in G_{ij}$. Without loss of generality we can assume that $c \in G_{12}$. Then

$$
abc = cab = p(p^2q^2uvw) \in G_{12}, \qquad acb = pqpqpuvw \in G_{13},
$$

and
$$
bca = qpq(p^2uvw) \in G_{23}.
$$

Therefore, A is of Type (6).

Now suppose that no two elements of A commute. First consider the case when *f(A)* does not contain a 3-cycle. Without loss of generality, we may assume that $a \in G_{12}$, $b \in G_{13}$, and $c \in G_{23}$. Therefore, $a = pu$, $b = qv$, and $c = pqpw$ for some $u, v, w \in Z$. Computing $A^{[3]}$ we obtain

$$
abc = cba = pqpqpuvw \in G_{13}, \qquad acb = bca = qpq(p^2uvw) \in G_{23},
$$

and
$$
bac = cab = p(p^2q^2uvw) \in G_{12}.
$$

It follows that A is of Type (8) .

Now let *f(A)* contain a 3-cycle. As no two elements of A commute, assume without loss of generality that $b \in G_{123}$, $c \in G_{12}$ and $a \in G_{13}$. Then $a = qu$, $b =$ *pqv,* and $c = pw$ for some $u, v, w \in Z$. Computing $A^{[3]}$ we obtain

$$
abc = qpqpuvw \in G_{123}, \qquad bca = cab = pqpquvw \in G_{132},
$$

$$
acb = bac = cba = p^2q^2uvw \in Z,
$$

and hence A is of Type (9) .

We proved that A always belongs to one of the Types $(1)-(3)$, $(5)-(6)$, $(8)-(9)$. Therefore, G is an $R(3,3)$ -group. It follows that $a^2 \in Z$ or $a^3 \in Z$ for every $a \in G$.

To prove that $|G'| = 3$, describe $[x, y]$ for all $x, y \in G$. Clearly,

$$
x \in \{u, pu, qu, pqu, pqpu, qpu\} \quad \text{and} \quad y \in \{v, pv, qv, pqv, pqpv, qpv\}
$$

for some $u, v \in Z$. Since $[au, bv] = [a, b]$ for all $a, b \in G$ and $u, v \in Z$, we can assume that $x, y \in \{1, p, q, pq, pqp, qp\}$. Suppose that $[x, y] \neq 1$. Then $x \neq y$ and neither x nor y is 1. Note also the commutator identities $[p,q] = [q,p]^{-1}$ and $[p, pq] = p^{-1}q^{-1}p^{-1}ppq = p^{-1}q^{-1}pq = [p, q]$, and that $p^2, q^2 \in \mathbb{Z}$. Now,

$$
[p, pqp] = p^{-1}p^{-1}q^{-1}p^{-1}ppqp = p^{-2}p^{2}q^{-1}p^{-1}qp = q^{-1}p^{-1}qp = [q, p],
$$

$$
[p, qp] = p^{-2}q^{-1}pqp = q^{-1}p^{-2}pqp = [q, p],
$$

\n
$$
[q, pq] = q^{-2}p^{-1}qpq = p^{-1}q^{-2}qpq = [p, q],
$$

\n
$$
[q, pqp] = q^{-1}p^{-1}q^{-1}p^{-1}qpqp = q^{-1}p^{-1}q^{-1}p^{-1}q^2q^{-1}p^2p^{-1}qp
$$

\n
$$
= q^{-1}p^{-1}q^{-1}q^2p^{-1}p^2q^{-1}p^{-1}qp = q^{-1}p^{-1}qpq^{-1}p^{-1}qp = [q, p]^2,
$$

\n
$$
[q, qp] = q^{-1}p^{-1}q^{-1}pqpq = [q, p],
$$

\n
$$
[pq, pqp] = q^{-1}p^{-1}p^{-1}p^{-1}pqpqp = q^{-1}q^{-1}qpp^{-2}qp = [q, p],
$$

\n
$$
[pq, qp] = q^{-1}p^{-1}p^{-1}q^{-1}pqqp = q^{-2}q^2p^{-2}p^2 = 1,
$$

and

$$
[pqp, qp] = p^{-1}q^{-1}p^{-1}q^{-1}pqpqp = p^{-1}q^{-1}q^{-1}pqp^{-2}pqp
$$

$$
= p^{-1}pq^{-2}qp^{-1}qp = q^{-1}p^{-1}qp = [q, p].
$$

Thus, every commutator in G equals 1, $[q, p], [q, p]^{-1}$, or $[q, p]^2$. It remains to prove that $[q, p]^3 = 1$. Here we use the fact that $q^{-1}p^{-1}qpq^{-1}p^{-1} \in Z$. We see that

$$
[q,p]^3 = (q^{-1}p^{-1}qpq^{-1}p^{-1})qpq^{-1}p^{-1}qp = q(q^{-1}p^{-1}qpq^{-1}p^{-1})pq^{-1}p^{-1}qp
$$

= $p^{-1}qpq^{-1}q^{-1}p^{-1}qp = p^{-1}qpp^{-1}q^{-2}qp = p^{-1}qq^{-1}p = 1.$

Thus, $|G'| = 3$, because $[q, p] \in G_{123}$, and hence $[q, p] \neq 1$. This completes the proof of Lemma 5. \Box

It follows from Lemmas 1, 2, 3, and 5 that if G is an $R(3,3)$ -group, then $|G'| \leq 3$. This proves our Theorem. \blacksquare

Examples: As examples of the four types of R(3, 3)-groups described in Lemma 1 consider: (1) any abelian group; (2) any nonabelian group of order 8 (the quaternion group or D_4 , the dihedral group of order 8); (3) the group of order 27 generated by elements x and y subject to defining relations $a^9 = b^3 = 1$ and $ba = a^4b$; (4) S_6 .

In conclusion, we suggest some unsolved problems.

Problems: (1) The groups $R(3, n)$ have been described for $n = 2$ in [4] and for $n = 3$ here. Now the most natural problem is that of finding the structure of groups $R(3, 4)$ (this problem has been discussed in our introduction). As we have already mentioned, the problem of describing the structure of $R(3, 5)$ groups (that is, of Q_3 -groups) is open.

(2) The next natural step would be studying groups $R(4, n)$ for various n, $4 \leq$ $n \leq 23$. All elements of $A^{[m]}$ belong to the same coset of G' in G because G/G' is an abelian group. It follows that $|A^{[m]}| \leq |G'|$. Thus, as corollaries to the result of this paper, $R(4,2) = R(3,2)$ and $R(4,3) = R(3,3)$. A classification of four-element subsets analogous to that for three-element subsets obtained in [4] might be helpful in solving this and similar problems.

(3) We know that $R(3,2)$ are groups G such that $|G'| \leq 2$, while $R(3,3)$ -groups are characterized by $|G'| \leq 3$. For $R(3, 4)$ an analogous conjecture fails, because the infinite dihedral groups belongs to $R(3, 4)$, while its commutator subgroup is infinite. Given m, find $s_0 = s_0(m)$ such that, for every $s \leq s_0$, a group G belongs to $R(m, s)$ if and only if $|G'| \leq s$.

(4) An ordered *n*-tuple (a_1, a_2, \ldots, a_n) of elements of a semigroup S is called rewritable if there exists a nonidentity permutation τ of $\{1, 2, ..., n\}$ such that $a_1 a_2 \cdots a_n = a_{\tau(1)} a_{\tau(2)} \cdots a_{\tau(n)}$. A semigroup S is called totally *n*-rewritable if every *n*-tuple of its elements is rewritable (see [4]). Let P_n denote the class of all *n*-rewritable groups (or semigroups).

It is easy to see that $P_n \subset R(n, n!/2)$. It was proved in [4] that $P_3 = R(3, 2)$, and hence there exists a number $s \leq m!/2$ such that $P_m \subset R(m,s)$. Given m, what is the minimal s with this property?

(5) An element a of a group G is called a [3]-n-element if, for any $b, c \in$ *G*, $|\{a, b, c\}^{[3]}| \le n$ (see [4]). It was proved in [4] that [3]-2-elements of any group form a characteristic subgroup. Is this true for [3]-3-elements? What is the maximal n for which $[m]-n$ -elements form a subgroup? (This subgroup is always characteristic.) For an analogous result see [3].

Call $a \in G$ a P_3 -element if, for any $b, c \in G$, the ordered triples (a, b, c) , (b, a, c) , and (b, c, a) are rewritable. Is it true that the set of all P_3 -elements of any group forms a characteristic subgroup?

Problems (3) and (4) were suggested by Professor D. J. S. Robinson.

References

- 1. Z. Arad and M. Herzog (eds.), *Products of Conjugacy Classes in Groups,* Lecture Notes in Mathematics 1112, Springer-Verlag, Berlin, 1985.
- 2. R. D. Blyth and D. J. S. Robinson, Recent progress on rewritability in groups, in *Group Theory,* Proceedings of the 1987 Singapore Conference, de Gruyter, Berlin, 1988.
- 3. L. V. Brailovsky, G. A. Freiman and M. Herzog, *Special elements in groups*, in *Group Theory,* Proceedings of the 2nd International Conference in Bressanone, Italy, 1989. Supplement to Rendiconti di Circolo Matematico di Palerma, II Ser. 23 (1990), 33-42.
- 4. G. A. Freiman and B. M. Schein, *Interconnections between two directions in the* theory *of groups: Structure* theory of *set addition and rewritability,* Proc. Am. Math. Soc. 113 (1991), 899-910.