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A B S T R A C T  

We describe groups G in which the set {abc, acb, bac, bca, cab, cba} contains 

three different elements at most for any a, b, c E G and show how this type 

of problem is connected with the rewritability (or permutation) properties 

of groups. 

In this paper we solve a problem connected with a rewritability property in 

groups. This type of problem is explained in more detail in our paper [4]. This 

general direction studies properties of groups and semigroups determined by mul- 

tiplication of subsets. Analogous problems are considered in the book by Arad 

and Herzog [1] and in a survey by Blyth and Robinson [2]. For other references 

see the bibliography at the end of [4]. 

For an m-element subset A = {al ,a2 , . . . ,am} of a group G let A[ m] de- 

note the set of all products a~o)a~(2)...a~(m) for all permutations r of the 

set {1, 2 , . . . ,  m}. Clearly, A[m] cannot contain more than m! different elements. 

The cardinality [A [m] [ of A[m], however, may be much smaller. For example, 

if G is abelian, then IA[m]l = 1 for every such subset A. A group G is called 
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an n ( m ,  n)-group if IA["] I < n for all m-element subsets A of G. We can as- 

sume that n is a natural number such that 1 < n < m! and, for convenience 

sake, the symbol R(m,  n) will denote the class of all R(m,  n)-groups. Clearly, 

R(m,  n) C R(m, n + 1). In particular, we obtain a chain 

R(m, 1) c R(m, 2) c . . .  c R(m, m!). 

If m = 1, then R(m,  n) is the class of all groups, and so we assume that m > 1. 

Then R(m,  1) is the class of all abelian groups and R = (m, m!) the class of all 

groups. For m = 2 we have the trivial cases of R(2,1) and R(2, 2). For m = 3 

there are four nontrivial classes: R(3, n) for 2 _< n _< 5. We described R(3, 2) 

in our previous paper [4] (it consists of all those groups G for which IG'] _< 2, 

where G' is the commutator subgroup of G). In this paper we describe R(3, 3). A 

description of R(3, 5) is a known group theory problem, for R(3, 5) coincides with 

the so-called Qa-groups whose structure is not known (see [2] and [4]). We hope 

that describing classes R(3, n) when n grows may shed light on the structure of 

Q3-groups and help solve similar problems. At the end of this paper we list a 

few natural unsolved problems. 

THEOREM: A group G is an R(3,3)-group i f  and only if  [G'[ < 3. /f[G'[  = 1, 

then G is abelian; i f  IG'I = 2, then G is an R(3,2)-group; and i f  ]G' I = 3 then 

either G / Z ( G )  is a group of exponent 3 or G/Z(G)  is isomorphic to $3, the 

symmetr ic  group of degree 3. 

Proof: We use the classification of three-element subsets from [4]. If A = 

{x, y, z} is a three-element subset of a group, then IA[31[ < 3 if and only if one of 

the following nine systems of equalities holds, where the elements x, y and z are 

renamed as a, b, and c in a certain order: 

(1) abc= 

(2) abc= 

(3) abc = 

(4) abc = 

(5) abc= 

(6) 

(7) 
(s) 

acb = bac = bca = cab = cba (all elements of A commute); 

bac = bca and acb = cab = cba (two pairs of elements of A commute); 

bac = cab = cba and acb =bca (one pair of elements of A commutes); 

bca= cab and acb = bac = cba; 

bac, cab = cba, and acb =bca (one pair of elements of A commutes); 

abc= bac = cab = cba, with acb and bca isolated (one pair of elements of 

A commutes); 

abc =bca,  bac = cab, and acb = cba; 

abc= cba, acb =bca,  and bac = cab; 
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(9) acb = bac = cba, bca = cab, and abc isolated (that is, not equal to the 

product of a, b, and c in any other order). 

Each of these systems is called a Type, and only those equalities of products 

of a, b, and c, which are specifically mentioned, hold in each Type. For example, 

the equality abc = bac is not listed in Type (7), and hence abc ~ bac in this Type. 

In Type (9) abc is not equal to any other product in A[ 3], which is why we say 

that abc is isolated. 

Proof." Su.~iciency. Let ]G'] < 3. If }G' I = 1, then G is an abelian group. If 

IC'l = 2, then, by Theorem 2, G is an R(3, 2)-group and hence an R(3, 3)-group. 

Now let IC'l = 3 and consider  a subset A = {a,b,c}  of G. If more than one 

pair of elements of A commutes, then A belongs to Types (1) or (2). If a and b 

are the only commuting elements of A, consider [ab, c-i] .  If [ab, c -1] = 1, then 

a b c =  cab, and hence A belongs to Type (3) or Type (6). Let [ab, c -1] # 1. If 

lab, c -1] = [a, c- i] ,  then an easy calculation shows that bc = cb, contrary to our 

assumption. Thus, [ab, c -1] # [a, c-1]. Analogously, [ab, c -1] = [b, c -1] leads to 

ac = ca, and hence lab, c -1] # [b, c-i].  Since c commutes neither with a nor with 

b, we see that [a, c-1], [b, c-~], and lab, c -~] are three elements of G', all different 

from 1. It follows that [a, c -1] = [b, c-~]. An easy calculation shows that this 

equality means acb = bca, that is A belongs to Types (3) or (5). 

Suppose that no two elements of A commute. Let abc # cab and a b c #  cba. 

Then [ab, c] # 1. It is easy to see that [ab, c] = [b, c] ¢~ ac = ca and [ab, c] = 

[b, al ~ abc = cba. Therefore, [ab, c] q~ {[b, a], [b, c]}. Thus, [b, al = [b, c]. 
Also, [ab, c] # [b,c] means that [ab, c] = [b,c] 2 = [b,a][b,c]. Now, the equality 

[ab, c] = [b, a][b, cl is easily shown to mean acb = cba. 

We have proved that a b c #  cab and abc # cba imply acb = cba. Interchanging 

here b and c, we obtain that acb # bac and acb # b c a  imply abc = bca. 

Suppose that [A[[3]I > 3. Then A [31 contains at least two isolated products 

(that is, products that are not equal to any other product in A[3]). Without 

loss of generality, assume that abc is an isolated product. Then a b c #  cab and 

a b c #  cba. Therefore, as we have proved earlier, acb = cba. Also, abc # b c a ,  and 

hence acb = b c a  or acb = bac. If acb =bca,  then cba = acb = bca, so that cb = bc, 

contrary to our assumption. Thus, acb # bca. It follows that acb = b a c .  We 

proved that if abc is an isolated product, then acb = bac = cba. Then [A[S][ > 3 

implies that abc, bca and cab are isolated products in A [31 and the commutators 

[a, bc], [b, ca], and [c, abl differ from 1. If Is, bc] = [ab, cl, an easy argument shows 
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that bca= cab, and so bca and cab are not isolated. Then [a, bc] • lab, c I and, 

since IG'I = 3, we obtain [a, bc] = [ab, c] -1 = [c, ab]. Analogously, [c, ab] = [b, ca], 

and hence In, bc] = [b, ca] = [c, ab]. Now, [b, ca I = [b, a] ¢~ bc = cb, so that 

[b, ca] = [b, a] -1 = [a, b]. Analogously, [c, ab] = [b, c], so that [a, b] = [b, c]. But 

we have seen earlier that [b, a] = [b, c]. Then In, b] = [b, a] = In, b] -1, which, 

together with In, b]s = 1, shows that In, b] = 1, contradicting ab # ba. Thus, 

[A[31[ > 3 leads to a contradiction. It follows that [AtSl[ < 3, and hence G is an 

R(3, 3)-group. 

Necessity: Let G be an R(3, 3)-group. For a, b 6 G we consider two cases: 

ab # ba and ab = ha. Assume that ab # ba. The only commuting elements of 

{a,a 2, b} are a and a 2, and possibly b and a 2. If ba 2 # a2b then {a, a 2, b} satisfies 

one of (3), (5) or (6). In each of these cases ban 2 = aa2b or aba 2 = a2ba. The 

latter possibility yields ab = ba, which is impossible. Therefore, if ba 2 # a2b then 

bas = aSb. Thus, C(a ~) U C(a s) = G for all a q G. Since C(a 2) and C(a 3) are 
subgroups of G, we obtain C(a 2) = G or C(a s) = G, so that for each a E G 

either a 2 E Z(G)  or a s E Z(G).  | 

LEMMA 1: One of the following four possibilities holds for every R(3, 3)-group 

G: 

(1) G is abelian; 

(2) a ~ C Z(G)  for every a ~ G (that is G /Z (G)  is a group of exponent 2); 

(3) a s 6 Z(G)  for every a 6 G (that is, G / Z ( G )  is a group of  exponent 3); 

(4) G / Z ( G )  -~ $3, where Ss denotes a symmetric group of degree 3. 

Proof." Suppose that the possibilities (1), (2) and (3) do not hold, that is, G 

possesses non-central elements whose squares belong to the center as well as 

those whose cubes belong to the center. Consider H = G/Z(G) .  Clearly, H is 

an R(3, 3)-group in which all elements are of orders 1, 2, or 3. It suffices to prove 

that H ~ Ss. 

Let x, y, z • H, x # y, and 1 # o(x) = o(y) ¢ o(z) # 1, where o(u) denotes 

the order of u. 

If x commutes with z, then o(zz)  = 6, which is impossible, and hence elements 

of orders 2 and 3 never commute. Thus, the only commuting elements in X = 

{x, y, z} may be x and y. If zy  = yz,  then X is of Types (3), (5) or (6), and 

hence (xy)z  = z(xy)  in Types (3) and (6), or xzy = yzx  in Types (3) and (5). 

Since x and y are commuting elements of the same order, o(xy) divides o(x), 
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that is, e i ther  o(xy) = 1 or o(xy) = o(x). In Types  (3) or  (6) o((xy)z) is the  

least  c o m m o n  mul t ip le  of  o(xy) and o(z), and hence o(zy) = 1. T h e n  xy = 1 

and x = y -1 .  If  o(y) = 2, then x = y, which contradicts  x # y; and  if o(y) = 3, 

then  x = y2. In T y p e  (5) 

• y z  = ( ~ u z ) ~  °(~) = ~ ( y z ~ ) ~  ° (~ ) -1  = x ( ~ z y ) x  ° (~) -~  = ( ~ ) y ~ ° ( ~ ) - x  

If  o(x) = 2, then  xyz = zyx, cont rary  to (5). Therefore,  no two different e lements  

of  order  2 commute .  If  o(x) = 3, then (x2y)z = x(xyz)  = ( x a z ) y x  2 --- z y x  2 = 

z(x2y). Since x and  y commute ,  o(x2y) divides o(x 2) = o(y) = 3. It  cannot  be  

3, for x2y commutes  with z and o(z) = 2. Therefore,  o(x2y) = 1, and  hence 

x2y = 1, so tha t  y = x -~ = x, cont rary  to x ~ y. Thus ,  two different e lements  

of order  3 can commute  only if one of them is a square of the other.  

If  xy ~ yx and o(z) = o(y) ~ o(z), then  X has no commut ing  elements  and  so 

it is of  T y p e s  (4), (7), (8), or (9). Also, xy ¢ 1, because  xy ¢ yx. Thus ,  o(xy) is 

2 or  3. Another  fact we will use is tha t  (yx)  °(~)+~ = y(xy)°(ZY)x = yx implies 

(u~)o(~,) = 1, a n d  h e n c e  o ( x y )  = o ( y ~ ) .  

If  (4) holds, then z commutes  with xy, and hence o(xy) = o(z). If  o(z) = 2, 

then  xy = z, for no two different e lements  of order  2 commute .  If  o(z) = 3, then  

xy E {z, z2}, for if two different e lements  of order  3 commute ,  then  each of t h e m  

is the  square  of the other.  

Let (7) hold. Call a the m i d d l e  element  of (7). Let o(x) = o(y) = 2. If x is 

the  middle  element,  then  

z z y  = y 2 . ~ y  = y ( y . ~ ) y  = ~ ( z x ~ ) y  = y z x u  2 = u z x .  

If  y is the  middle  element,  then  

• z y  = x z y ~  ~ = x ( z y . ) ~  = ~ ( ~ z ) ~  = . ~ y ~ x  = y z . .  

If  z is middle,  then  

• yz = ~ y z 2  = ~(yzx)~  = x ( , z y ) ~  = ~*z~ ,  = z ~ , .  

Each  of the  equalities xzy = yzx and xyz = zyx contradicts  (7). 

Now let o(z) = o(y) = 3 and o(z) = 2. If  z is middle,  then  

x y z  = z ~ x y z  = z ( z ~ y ) z  = z ( y ~ z ) z  = z y x z  2 = ~ y ~ .  



22 G . A .  FREIMAN AND B. M. SCHEIN Isr. J. Math. 

The equality x y z  = z y x  contradicts (7). 

If y is middle, then 

~ ,  = ; ~ y ~  = z ( z ~ x ) z  = z ( ~ ) ~  = z ~ y z  ~ = z ~ y .  

The equality y x z  = z x y  contradicts (7). If z is middle, it follows from (7) that  z 

commutes with x y .  Then x y  = z and o ( x y )  = 2. 

If (8) holds and o(z) = 3, then 

= z ( z x y ) z = z ~ ( z v z ) = z ~ ( ~ y x ) = z 3 ( y ~ )  = y ~ .  

Ifo(x)=2, then o(x)=3 and 

~ =y~3 = (y~)x~ =(~zy)x~ =~(~)~ 

= x ( ~ ) x  =x2(~)  =x2(~y) =~3~y =~y. 

Thus, y commutes either with x or with z, which contradicts (8). Therefore, 

Type (8) cannot hold. 

It is easy to see that in Type (9) z commutes with x y  or with VX. It follows 

from x y  # 1 that o(z )  = o ( x y )  or o(z )  = o ( y z ) .  Since o ( x y )  = o ( y z ) ,  we obtain 

o(zy) = o(z) .  As in Type (4) above, we conclude that xy = z or x y  = z 2. 

Let u, v, x, y E H and o(u)  = o(v)  = 2, o ( z )  = o(y)  = 3. Then either u v  = 1, 

in which case u = v, or u # v, in which case u v  ~ vu  and, as we have just seen, 

u v  E { x , z 2 } .  Analogously, uv  E {y ,  y2}.  Therefore, either x = y, or z = y2. 

Thus, H contains exactly two elements of order 3, namely x and x 2. Suppose 

that u, v, w, z are four different elements of order 2. Then each of the products 

u z ,  v z ,  and  w z  has order 3, and hence equals z or x 2. It follows that at least two 

of these products are equal, and so at least two elements in {u, v, w} are equal. 

Therefore, H cannot contain more than three elements of order 2. Thus, H 

contains 1, two elements of order 3, and at most three elements of order 2. Since 

all groups with less than six elements are abelian, [H I = 6. The only nonabelian 

group of order six is isomorphic to $3. This completes the proof of Lemma 1. 

| 
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LEMMA 2: H G is an R ( 3 , 3 ) - g r o u p  and  G / Z ( G )  is a g r o u p  o f  e x p o n e n t  2, t hen  

G is an R(3, 2) -group .  

Proof :  Let G be a nonahelian R(3, 3)-group with G / Z ( G )  a group of exponent 

2 (that is, a 2 E Z ( G )  for all a E G). To prove that G is an R(3, 2)-group consider 

a subset A = {a, b, c} of G. 

If A is of Type (5), then acb = bca implies b2ac = acb ~ = (acb)b = (bca)b = 

b(cab). Cancelling b we obtain bac = cab, which contradicts (5). 

If A is of Types (6) or (7), then bac = cab, and hence acb 2 = b2ac = b(bac) = 

b(cab) = (bca)b. Cancelling b we obtain acb = bca, which contradicts both (6) 

and (7). 

If A is of Type (9), then b commutes with he. No two other elements of the 

set C = {a, b, ac}  commute, because no elements of A commute. Thus C belongs 

to one of the Types (3), (5), or (6). But Types (5) and (6) are impossible, and 

hence C is of Type (3). Thus b.  a .  ac = a c .  a .  b. Since a 2 e Z(G), we obtain 

a2bc = ba2 c = acab. This yields a b c =  cab, which contradicts (9). 

If A is of Type (8), consider C again. No two elements of C commute, as now 

b(ac) ¢ (ac)b. Thus C belongs to one of the Types (4), (7), (8), or (9). But we 

have just seen that Types (7)-(9) are impossible, and hence C belongs to (4). 

Then ac .  b. a = a .  ac .  b. Cancelling a we obtain cba = acb, contrary to (8) for A. 

Thus, A can belong only to one of the Types (1)-(4). By Theorem 2 of [4], G 

is an R(3, 2)-group. II 

LEMMA 3: H G is an R ( 3 , 3 ) - g r o u p  and  G / Z ( G )  is a g r o u p  o [ e x p o n e n t  3, t h e n  

la' l  < 3. 

Proof:  Let G be a nonabelian R(3, 3)-group mad G / Z ( G )  a group of exponent 

3. First we prove that no subset A = {a, b, c} of G can belong to Types (3), (8) 

and (9). 

Let A be of Type (9). Consider B = {a,b ,  ca}.  Only b and ca commute in 

this set. Thus, B belongs to the Types (3), (5), or (6). If (3) or (5) hold, then 

c h . e .  b = b . a . ca. Thus, ca2b = (bac)a = (cba)a. Cancelling c we obtain 

a2b = ba 2 Thus, both a 2 and a s commute with b, and hence ab = ba, contrary to 

our assumption about A. If (6) holds, then a .  b .  ca = b.  c a .  a. Cancelling a we 

obtain a b c =  bca, which contradicts (9). Thus, Type (9) is impossible. 

Let A be of Type (8). No elements of the set C = {a, b, ac} commute, and 

hence C belongs to Types (4), (7), (8), or (9). As we have just seen, Type (9) is 
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impossible. If C is of Type (4), then a c .  b .  a = a .  a c .  b. Cancelling a we obtain 

cba  = acb ,  contrary to (8) for A. Let C be of Type (7). If a is the middle element, 

then a c . a . b  = b . a . a c ,  and hence ( ab )(  a c )  =- a (  bac)  = a (  cab)  = ba2 c. Cancelling a c  

we obtain ab  = ha,  which is false. If b is the middle element, then a c .  b. a = a .  b. ac .  

Cancelling a we obtain cba = bac ,  which fails in A. If ac  is the middle element, 

then a . a c .  b = b . a c . a ,  so that a b c a  = a (  bca)  = a ( a c b  ) = a~cb  = bach .  Cancelling 

a we obtain abc  = bac ,  which fails in A. Thus, C cannot be of Type (7). If C is 

of Type (8), then a c  . b . a = a • b .  ac .  Cancelling a we obtain cba  = bac ,  which 

fails in A. Thus, C cannot belong to any of the Types (1)-(9). This shows that  

A cannot belong to Type (8). 

Now let ab  = ha,  and suppose that  A belongs to Type (3). Then no two 

elements of the set E = {a, bc, c }  commute, and hence E is of Type (4) or (7). 

In the former case bac  2 = a b c  2 = a • bc • c = bc • c . a = bc2a.  Cancelling b we 

obtain a c  2 = c2a .  Thus, a commutes both with c 2 and c 3, and hence a c  = c a ,  

contrary to our assumption about A. So E must be of Type (7). If a is the 

middle element of E, then bc . a . c = c . a . bc, and hence bca = cab ,  which fails in 

A. If bc is the middle element of E, then c a b c  = a .  b c .  c = c .  b c .  a.  Cancelling e 

we obtain a b c =  bca.  Since ab = ba,  we obtain bac  = bca,  whence a c  = ca ,  which 

contradicts our assumption about A. Thus, Type (3) is impossible. 

To complete our proof of Lemma 3 we need another Lemma. 

LEMMA 4: L e t  G b e  a n  R(3, 3 ) - g r o u p  w i t h  G / Z ( G )  a g r o u p  o f  e x p o n e n t  3. F o r  

every a,  b, c E G ,  i f  e c o m m u t e s  n e i t h e r  w l t h  a nor w i t h  b, t h e n  [a, c] = [b, c] o r  

[a, c] = [b, c ] - ,  

Proof." Let ab  ~ ha. Then no two elements of the set {a, b, ab}  commute, and 

so this set is of Type (4) or (7). If (4) holds, then b .  a .  ab = a .  a b .  b. Cancelling 

b we obtain a2b = ba 2, which, as we have seen, implies ab = ba,  contrary to our 

assumption. Therefore, (7) holds. If a or b is the middle element, then either 

b . a . ab  = ab  . a . b or a . b . ab  = ab . b . a.  In both cases, cancelling ab  we 

obtain ab  = ha,  which is impossible. Therefore, ab is the middle element, and so 

a . ab . b -= b . ab  . a a n d  b . a . ab  = ab . b . a .  

We proved that G satisfies the identities a2b 2 = (ha )  2 a n d  a b 2 a  = ba2b.  It 

follows that  a3b  3 -= a ( a 2 b 2 ) b  = a ( b a b a ) b  = (ab) 3, and so the mapping f :  G ~ G 

defined by f ( a )  = a 3 for all a E G is an endomorphism of G. Since f maps G 

into Z ( G ) ,  we see that G' C Kerf ,  and hence [a, 5] 3 -- 1 for all a, b E G. Also, 
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(ab) = a% 3 = b3a 3 = (ha) N o w  we  have  

25 

[a, b] = (ba) -2  (ba)(a b) = (ba)-2  (ba 2 b) = (ba) -2  (ab 2 a) = (ba) -3  b(a 2 b 2)a 

= (ba) -ab(ba)2a  -= b(ba)-3(ba)2a  = b ( b a ) - l a  = [b -1,  a]. 

Thus [a,b] = [b,a] -1 = [a- l ,b]  -1 = [b,a-1]. 

Again, consider A = {a, b, c}, in which c commutes nei ther  with a nor  b. Let 

ab = be. Then  ab -1 = b - l a .  Thus A belongs to one of Type  (5) or (6), and 

hence acb = bca or a b c =  cab. In the former case, 

[a, c][c, b] = a - l  c - l  a c c - l  b - l  cb -- a - l  c - l  a b - l  cb 

= a - l c - l b - l a c b  = (bca ) - l (acb )  = 1, 

and hence [a, c] = [c, b]-I = [b, c I. If (6) holds, we obtain 

(ca)(ac)2(cb)  = (ca)c2 a2cb = (cac)(ca2c)b = (cac)(ac2 a)b = (ca)2 c(cab) 

= (ca)2c(abc) = (ca)abc = (bc)(ca) a -_ (bc)(ac) a, 

and hence 

cac - l a  - l c b  = (ca)(ac)  -1  (cb) = (ca)(ac)  2 (ac) -3 (cb) = (ca)(ac)  2(cb)(ac) -3  = bc. 

Therefore,  [c -1,  a -1] = c a c - l a  -1 = bcb - l c  -1 = [b -1, c-11. This equality follows 

from ab = ba and abc = cab. If we replace a,b,  and  c by a - l , b  - 1 ,  and  c -1 ,  

respectively, we obtain the equality [c, a I = [b, c]. Therefore,  [a, c] = [c, a ] - I  = 

[b, c ] -  1. 

Now suppose that  ab # ba. Then A satisfies (4) or (7). Let (4) hold. Then  

abc = cab, and  

[a, c][c, b -I]  = a - l  c - l  ac • c - l  bcb -1 -- b(b-l a - l  c - l  abc)b -1 

= b(cab) - l (abc)b  -1 = 1. 

We obtain [a, c] = [c, b-l]  -1 = [b -1, c] = [c, b] = [b, c] -1. 

Now let A satisfy (7). Suppose tha t  a is the middle element. Then  a and bc are 

the  only commuting elements of the set E = {a, bc, c}, and so E is of Type  (5) 
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or (6). If (6) holds, then c. abc =abc .c,  and hence cab =abc, which contradicts 

(7). If (5) holds, we have 

( c b ) ( a c ) = ( c b a ) c = ( a c b ) c = a . c . b c = b c . c . a = ( b c ) ( c a ) .  

Thus ac = (cb)-l(bc)(ca), so that  [a -1,  c -1] = (ac)(ca) -1 = (cb)-'(bc) = [b,c]. 

Therefore,  

In, c] = [c, a ] - '  = [c, a - 1  ] = [a -a  , c] - a  = I n - ' ,  c - 1 ]  = [b, c]. 

Type  (7) is invariant under  the transposit ion of b and c. It follows that  [a, c] = 

[b, c] holds together with In, b] = [c, hi, and hence [a, b] = [c, b] = [c, a]. If we apply 

a cyclic permuta t ion  (a, b, c) to (7), b becomes the middle element and we obtain  

the equalities [b, c] = [a, c] = [a, b I. Applying a cyclic permuta t ion  (a, c, b) to (7), 

we make c the middle element, and obtain the equalities [c, a] = [b, a] = [b, c], 

which imply [a, c I = [b, c]. Thus, In, c] = [b, c] for any middle element of A. This 

proves Lemma 4. | 

To complete the proof  of Lemma 3 assume that  a, b, c, d E G and consider 

[a, b] and [c, d]. Suppose that  these commutators  differ from 1. There exists 

e E G which commutes  with neither b nor c. Indeed, if there is no such e, then 

C(b)UC(c) = G, and hence C(b) = G or C(c) = G, that is, b 6 Z(G) or c 6 Z(G). 
Then [a,b] = 1 or [c,d] = 1, contrary to our assumption.  

Since a and e do not commute  with b, obtain, by Lemma 4, that  In, b] = [e, b] 

or [a, b] = It, b] -a .  Since e does not commute  with b and c, we obtain,  again 

by  Lemma 4, It, b] = [e, c] or It, b] = It, c] -a. Now, c does not commute  with 

e and d. Thus,  by  Lemma 4, [e, c I = [d, c] or [e, c] = [d, cl -a. Combining these 

possibilities, we see that  [a, b] = [c, d] or [a, b I = [c, d] -1. Thus,  LG'[ < 3 (in fact, 

IG' I = 3). This proves Lemma 3. II 

LEMMA 5: Let G be a group such that G/Z(G) "~ Ss. Then IG'[ = 3, G is an 

R(3, 3)-group and no three-element subset  of G belongs to the Types (4) and (7). 

Proof'. Let f : G --* Ss be a homomorphism of G onto the group Ss of all 

permuta t ions  of {1,2,3} and let Z = Z(G) be the kernel of f .  Then G is 

a disjoint union of cosets Z, Ga2, G13,G23,Ga23, and Ga32 of Z. Here Gij = 

f - ' ( ( i , j ) )  and Cijk = f -a ( ( i , j , k ) ) .  Choose p E Ca2 and q E a l s .  Then 

pq E Ga2s,qp E Giz2,pqp, qpq E G23,(pq) 2 E G13~,(qp) 2 E G123, and p2,q2 E Z. 
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Consider a subset A = {a, b, c} of G. If more than one pair of its elements 

commute, then A belongs to Type (1) or (2). Suppose that  only a and b commute 

in A. Then f ( a )  and f ( b )  commute in $3, and hence either f ( a )  = ] (b)  or 

f ( a )  • {(1,2,3) , (1,3,2)} a n d / ( a  2) = f ( b ) .  

Consider all possible cases when ab = ba. Let f ( a )  = f ( b ) .  One possibility is 

that  a, b • Gi j .  Without  loss of generality we may assume that  a, b • G12. Then 

a = pu  and  b = pv  for certain u, v • Z. Since c commutes neither with a nor b, 

we see that  c ~ Z U G12. Without loss of generality we may suppose that  either 

c • Gla or c • G123. In the former case c = qw for some w • Z. Then 

abc = ( p u ) ( p v ) ( q w )  = p2 q u v w  = q ( p 2 u v w )  • G13, 

acb = ( p u ) ( q w ) ( p v )  = ( p q p ) ( u v w )  • G12a, 

bca --  ( p v ) ( q w ) ( p u )  = ( p q p ) ( u v w )  = acb, 

cba = cab  = ( q w ) ( p u ) ( p v )  = q(p uvw) = abc = bac.  

Thus, A is of Type (3). If c • G123, then c = pqw for some w E Z. In this ease 

bac = abc = cba = cab : p q ( p 2 u v w )  E G12a, 

acb = b c a  = q p ( p 2 u v w )  E G132, 

and hence A is of Type (3). 

Now assume that  a, b E Gi ik .  Again, without loss of generality we can assume 

that  a, b E G123. Then a = pqu and b = pqv  for some u, v E Z. Now, c does not 

commute with a and b, and hence c ~ Z U G12a U G132. It follows that  c E Gij. 

Without  loss of generality assume that  c E G12. Then c = p w  for some w E Z. 

Computing all elements in A [3], we easily obtain: 

bac = a b c  = p q p q p u v w  E Gla, acb = b c a =  p(p2 q 2 u v w )  E G12, 

and cba = cab = qpq(p2uvw)  E G23. 

It follows that  A belongs to Type  (5). 

Next we suppose that  ab = ba, but f ( a )  ~ f ( b ) .  Without loss of generality, 

a E G12a a n d b E  Gla2. Thus, a = p q u  and b = qpv for some u, v E Z. Since 
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c does not  commute  with  a and  b, c E Gij .  Wi thou t  loss of general i ty  we can 

assume tha t  c E G12. Then  

abc = cab = p(p2 q2uvw) E G12, acb = pqpqpuvw E G13, 

and b c a =  qpq(pZuvw) E G23. 

Therefore ,  A is of T y p e  (6). 

Now suppose  tha t  no two elements  of A commute .  First  consider the case when 

f ( A )  does not contain a 3-cycle. Wi thou t  loss of  generality, we m a y  assume  tha t  

a E G12, b E G13, and c E G23. Therefore,  a = pu, b = qv, and c = pqpw for 

some u, v, w E Z.  Comput ing  A [31 we obta in  

abc = cba = pqpqpuvw E G13, acb = b c a  = qpq(p2uvw) E G23, 

and bac = cab = p(p2 q2uvw) E G12. 

It  follows tha t  A is of T y p e  (8). 

Now let f ( A )  contain a 3-cycle. As no two elements  of A commute ,  assume 

wi thout  loss of  general i ty  tha t  b E G123, c E G12 and a E G13. Then  a = qu, b = 

pqv, and c = pw for some u, v, w E Z.  Comput ing  A [3] we obta in  

a b c =  qpqpuvw E G123, bca = cab = pqpquvw E Gx32, 

acb = bac = cba = p2q2uvw E Z, 

and hence A is of T y p e  (9). 

We proved tha t  A always belongs to one of the Types  (1)-(3) ,  (5)-(6) ,  (8)-(9) .  

Therefore ,  G is an R(3, 3)-group. It  follows tha t  a 2 E Z or a 3 E Z for every 

a E G .  

To prove tha t  IG'I = 3, describe Ix, y] for all z , y  E G. Clearly, 

x E {u ,pu ,  qu, pqu ,pqpu ,qpu}  and y E {v ,pv ,  qv ,pqv ,pqpv ,qpv}  

for some u, v E Z. Since [au, by] = [a, b] for all a, b E G and u, v E Z,  we can  

assume tha t  z , y  E {1 ,p ,q ,pq ,pqp,  qp}. Suppose tha t  [z,y] # 1. Then  x # y and  

nei ther  x nor  y is 1. Note also the c o m m u t a t o r  identities [p,q] = [q,p]-X and 

[p, pq] = p - X q - l p - l p p q  : p - l q - a p q  : [p, q], and tha t  p2,q2 E Z.  Now, 

[p, pqp] = p - l p - l q - l p - l p p q p  = p - 2 p 2 q - l p - l q p  = q - l p - l q p  = [q,p], 
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and 
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~,qp] = p-2 q- ,pqp = q- lp -2pqp  = [q,p], 

[q,Pql = q -2p- l  qpq = p - l  q-2 qpq = ~ ,  q], 

[q, pqp] = q - l  p - l  q - l  p - l  qpqp = q - l p - l  q - l p - l  q2 q - l p 2 p - l  qp 

= q - l p - l q - l q 2 p - l p 2 q - X p - l q p  = q - l p - l q p q - l p - l q p  = [q,p]2 

[q, qp] = q - l p - l  q - l  qqp = [q,p], 

[pq,pqp] = q - l p - l p - l q - , p - , p q p q p  = q - , q - , q p p - 2 q p  = [q,p], 

[pq, qp] = q - l p - l p - l  q-lpqqp = q-2q2p-2p2 = 1, 

~qp, qp]= p - l q - l p - l p - l q - l p q p q p  = p - l q - l q - l p q p - 2 p q p  

= p - l p q - 2 q p - l q p  = q - l p - l q p  = [q,p]. 

Thus, every commutator  in G equals 1, [q,p], [q,p]-l, or [q,p]2. It remains to 

prove that  [q,p]3 = 1. Here we use the fact that q - l p - l q p q - l p - I  E Z. We see 

that  

[q, p]3 = (q-,p-1 qpq-lp-1)qpq-lp-lqp = q(q-lp-,qpq-lp-1)pq-lp-,qp 

= p - l q p q - l q - l p - l q p  = p - l q p p - l q - 2 q p  = p - l q q - l p  = 1. 

Thus, IG'I = 3, because [q,p] e G,2,,  and hence [q,p] # 1. This completes the 

proof of Lemma 5. | 

It follows from Lemmas 1, 2, 3, and 5 that if G is an R(3,3)-group, then 

[G'] _< 3. This proves our Theorem. | 

Examples: As examples of the four types of R(3, 3)-groups described in Lemma 

1 consider: (1) any abelian group; (2) any nonabelian group of order 8 (the 

quaternion group or D4, the dihedral group of order 8); (3) the group of order 

27 generated by elements x and y subject to defining relations a 9 = b 3 = 1 and 

ba = a4b; (4) S~. | 

In conclusion, we suggest some unsolved problems. 



30 G.A. FREIMAN AND B. M. SCHEIN Isr. J. Math. 

Problems: (1) The groups R(3, n) have been described for n = 2 in [4] and 

for n = 3 here. Now the most natural problem is that of finding the structure 

of groups R(3, 4) (this problem has been discussed in our introduction). As we 

have already mentioned, the problem of describing the structure of R(3, 5) groups 

(that is, of Q3-groups) is open. 

(2) The next natural step would be studying groups R(4, n) for various n, 4 _< 

n < 23. All elements of A [ml belong to the same coset of G ~ in G because G/G ~ 

is an abelian group. It follows that [AE-q[ < [a'[. Thus, as corollaries to the 

result of this paper, R(4, 2) = R(3, 2) and R(4, 3) = R(3, 3). A classification of 

four-element subsets analogous to that for three-element subsets obtained in [4] 

might be helpful in solving this and similar problems. 

(3) We know that R(3, 2) are groups G such that [G'[ _< 2, while R(3, 3)-groups 

are characterized by [G'[ < 3. For R(3,4) an analogous conjecture fails, because 

the infinite dihedral groups belongs to R(3, 4), while its commutator subgroup is 

infinite. Given m, find So = so(m) such that, for every s < so, a group G belongs 

to R(rn, s) if and only if [G'I _< s. 

(4) An ordered n-tuple (al, a2,. . . ,  an) of elements of a semigroup S is called 

r e w r i t a b l e  if there exists a nonidentity permutation r of {1,2 . . . .  , n} such that 

ala~. . .an  = a~(1)a~(=)'"ar(n). A semigroup S is called t o t a l l y  n - rewr i t ab le  

if every n-tuple of its elements is rewritable (see [4]). Let Pn denote the class of 

all n-rewritable groups (or semigroups). 

It is easy to see that P~ C R(n, n!/2). It was proved in [4] that P3 = R(3, 2), 

and hence there exists a number s <_ rn!/2 such that Pm C R(m,s) .  Given m, 

what is the minimal s with this property? 

(5) An element a of a group G is called a [3]-n-element if, for any b, c E 

G, I{a, b, c}[alJ _< n (see [4]). It was proved in [4] that [3]-2-elements of any group 

form a characteristic subgroup. Is this true for [3]-3-elements? What is the 

maximal n for which [m]-n-elements form a subgroup? (This subgroup is always 

characteristic.) For an analogous result see [3]. 

Call a E G a P3-element if, for any b, c E G, the ordered triples (a, b, c), (b, a, c), 

and (b, c, a) are rewritable. Is it true that the set of all P3-elements of any group 

forms a characteristic subgroup? II 

Problems (3) and (4) were suggested by Professor D. J. S. Robinson. 
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